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ABSTRACT

Mathematical modelling is essential in comprehending, optimising, and administering air-cooling 
photovoltaic (PV) systems by considering factors like temperature, irradiance, and module 
characteristics. Mathematical modelling allows for informed decision-making, optimisation, and 
risk management in designing, operating, and maintaining air-cooling PV systems. This study 
creates mathematical models to identify an air-cooling PV system and anticipate the PV module’s 
output performance based on the solar irradiance received. The air-cooling PV system is modelled 
using the system identification toolbox, which relies on experiment data. The modelling process 
utilises a black-box approach, eliminating the necessity for internal parameter knowledge. The 
transfer function estimation method was selected as the best non-linear model due to its superior 
fit percentage. Prior to the installation of the air-cooling system, the data-driven analysis produced 

a continuous-time transfer function with an 
accuracy of 90% for the PV module model, 
whereas the air-cooling PV system model 
obtained an accuracy of 94.3%. The validity 
of the acquired models was assessed using 
Simulink by employing multiple levels of PSH. 
The model exhibits a failure rate of less than 
10% in predicting inequality. The validation 
results for the PV module model were 90.1% 
and 90.8% for high, moderate, and low PSH, 
respectively. Similarly, the air-cooling PV 
system model got validation results of 91.7%, 
93.2%, and 91.5%, while the mean output 
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voltage increased by 10.8%, 17.5%, and 15.3%. Consequently, a continuous-time transfer function 
model is created, which will be utilised for developing and tuning controllers in future research.

Keywords: Air-cooling PV system model, mathematical model, modelling, system identification, transfer 
function model 

INTRODUCTION

Cooling is required for a photovoltaic (PV) module because it can substantially boost the 
PV output performance. Without proper cooling, a substantial quantity of energy is lost as 
heat, as only 13-15% of solar radiation is converted into electricity (Mattei et al., 2006). 
Solar irradiance and operation temperature of the PV module (Tcell) were found to be 
impediments to reaching larger PV system outputs (Mustafa et al., 2023). A PV module’s 
power output and electrical efficiency are determined by its Tcell and temperature coefficient 
(Dubey et al., 2013; Popovici et al., 2016). For each degree over 25oC, there is an average 
reduction in efficiency of around 0.45% (Haidar et al., 2018). The output voltage of the 
PV module can be calculated using Equation 1:

𝑉𝑉𝑝𝑝𝑣𝑣𝑥𝑥 = 𝑉𝑉𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠  𝑋𝑋 [1 + �
𝛾𝛾𝑉𝑉𝑥𝑥
100

� �𝑇𝑇𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 − 25°𝐶𝐶�]      [1]

where Vpvx is the voltage for the PV module at x condition, Vx_stc is the voltage for x 
condition at Standard Test Condition (Volt), and γvx is the temperature coefficient for the 
voltage at x condition. 

There are two categories of cooling methods for PV modules: active cooling, which 
involves energy consumption, and passive cooling, which utilises conduction or natural 
convection to remove heat. Wind cooling can improve the performance of PV modules, 
but passive cooling is inefficient due to the limitations of natural heat transfer (Mustafa et 
al., 2024). Despite the fact that water cooling is more effective, air cooling is preferred due 
to its minimal construction and operating costs. PV module efficiency was better by 6.2%  
as a result of the cooling experiment (Erol et al., 2021). In addition to lowering the Tcell  
continuous cooling also increases the power of the PV module by 20% compared to the 
non-cooled one (Luboń et al., 2020). Cooling PV module is a key strategy for enhancing 
the efficiency of their output performance.

Mathematical models serve as the foundation for most analytical techniques used in 
engineering. These models can be derived by a theoretical method that relies on fundamental 
physical rules or through an experimental approach based on system measurements (Assani 
et al., 2022; Cheng & Lu, 2022). Generating models based on empirical data is commonly 
referred to as system identification (SI) (Bhuvaneswari, 2012) and numerical modelling can 
be enhanced with the use of an additional experimental-based approach (Al Hadad et al., 
2018). An identification experiment aims to ascertain the dynamic properties of a certain 
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process. One of the benefits of using models is that the step test employ is comprehensive, 
making it simple and cost-effective to apply. Step testing is often conducted on a system 
once the process has been identified or stabilised. Mathematics modelling is a systematic 
procedure that involves acquiring, structuring, processing, and identifying mathematical 
models derived from raw data from real-world systems. Modelling process control is of 
utmost significance since an effective control system is contingent upon the presence of 
a well-constructed model that precisely depicts the dynamics of the process (Tawerghi et 
al., 2021). 

Modelling photovoltaic systems is challenging due to their non-linear characteristics, 
particularly when integrated with cooling structures (Adak et al., 2022). Several studies 
have previously focused on mathematical models for PV modules, but none of them 
have specifically addressed air-cooling PV systems. An air-cooling PV system requires 
a mathematical model to facilitate engineering analyses involving PV modules and air-
cooling systems (Adak et al., 2021). Mathematical modelling plays an important role 
in optimising the efficiency of air-cooling PV systems, both in terms of PV module 
performance and the effectiveness of the air-cooling mechanism. Algorithms for air-cooling 
PV systems provide notable advantages by enabling cost reduction through the simulation 
and evaluation of the cooling system prior to its physical implementation. For existing 
air-cooling PV systems, having a data-based model is essential. The quality of a model 
is contingent upon the calibre of the input data, which is acquired through experimental 
methodologies. Therefore, the experiment must be conducted according to the appropriate 
standard procedures, and all factors that might impact the outcome must be considered to 
ensure the accuracy of the data. This model enables the analysis of the system’s impact 
and facilitates research on enhancing the performance of the air-cooling system and PV 
module under different irradiance levels without the need for additional devices, resulting 
in a cost reduction. This air-cooling PV system model allows for accurate prediction of the 
performance of PV modules and the air-cooling PV system without the need for conducting 
experiments.

Therefore, the aim of this paper is to develop mathematical models using real data 
experiments to predict the output voltage of the PV module and prove that the recommended 
air-cooling PV system successfully increased its output performance. One of the greatest 
challenges in this study was to make sure the obtained models were appropriate and met the 
high, medium and low levels of solar irradiance in a day according to the solar irradiance 
and expected output PV based on the mathematical relationship. This study uses black-box 
methods for non-linear systems to investigate a data-based model for PV module output 
and air-cooling PV systems. Different black-box model structures are used for precise 
models. Data collection for this study involves solar irradiance, Tcell output voltage, and 
PV module power. 
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System Identification 

SI is the process of creating mathematical representations of dynamic systems using 
statistical techniques applied to collected data. The process of designing experiments to 
effectively collect data from the system to develop models and lower model complexity 
was part of the study of SI. In the process of SI, a mathematical model is constructed to 
represent a dynamic system by utilising a collection of measured stimulus and response 
samples. The present focus lies on the identification of parameters and attributes of 
dynamic systems through the utilisation of specialised identification methods (Valousek 
& Jalovecky, 2021). SI uses measured input and output data to construct a precise model 
to create a mathematical representation of the system (Schoukens et al., 2012). Input and 
output vectors are used to define these systems, but the majority of physical systems are 
non-linear, making their models difficult to linearise analytically (Dorf & Bishop, 2010). 
Constructing models that meet analytical criteria may require non-linear engineering 
models. The mathematical model accurately determines the effects and reactions on the 
constructed model (Tuhta, 2021).

The process of SI involves several key components, including experiment design, 
experiment implementation, data pre-processing, model structure selection, model fitting 
to data, and model validation, as shown 
in Figure 1 (Šajić et al., 2022). These 
components are essential for effectively 
identifying and understanding the various 
aspects of a given system. Continuous 
time transfer functions (TF) can be used to 
describe physical models more generally. 
In MATLAB, the SI toolbox is a series of 
procedures used to identify and analyse 
different system components, including 
their structure, properties, and measured 
data from the time domain (Ljung, 2012). 
It also simplifies SI using experimental 
data. The SI tool incorporates the transfer 
function (TF) models or process models’ 
functionalities, which facilitate the use 
of distinct identification approaches. 
A dynamical mathematical model is a 
mathematical representation that explains 
the behaviour of a system or process 
dynamic, which can occur in either the time Figure 1. Cycle for system identification
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Model structure
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or frequency domain (Åström & Eykhoff, 1971). The programme offers a dependable and 
near-accurate model structure. The proposed model underwent testing and simulation to 
demonstrate its effectiveness and reliability. This approach can also be used to estimate 
the model of an air-cooling PV system. Various modelling techniques, such as intelligent, 
linear, and non-linear models, can be applied.

METHODOLOGY

This study used the SI toolbox in MATLAB as an approach for the data-based model 
development. The research in this study includes the collecting and processing of all 
essential data, the selection and creation of the model structure, the estimate of model 
parameters, and the validation of the model. An experiment at an existing PV system in 
a tropical region, Kajang, Selangor, Malaysia, provided the data. All collected data was 
divided into training and testing sets. SI process and collected data were utilised in a black 
box for transfer function model development with different time delays and orders. Various 
models are investigated to determine the best structure yielding satisfactory accuracy based 
on the fit percentage. The selected model was tested using high, medium and low levels of 
solar irradiance generated data in a day from the experiment for optimisation, evaluation 
and validation for the most optimal model. 

Data Collection and Pre-processing

A PV system was chosen at the German Malaysian Institute in Kajang, Selangor, Malaysia. 
The system consists of two 3kW PV sub-arrays of poly-crystalline PVs. Each sub-arrays 
grid-connected PV system utilised 12 pieces of 250 W poly-crystalline PV modules, installed 
by one string with 12 modules per string. An air-cooling system prototype was installed 
on a 250 W module of the PV system. Only one module was tested in the experiments. 
The irradiance metre was strategically placed near the PV module area to ensure the 
accuracy of the measured irradiance for 
analysis. A digital temperature sensor was 
attached to the back of the PV module to 
monitor temperature fluctuations on the 
Tcell. An energy meter was connected to the 
PV module to record voltage and current 
measurements. Small boxes are added to 
both ends of the cross-flow fan to elevate 
it away from the heated surface of the 
roof, as shown in Figure 2. This is done to 
guarantee that the temperature of the fan is 
not impacted by the surface temperature of 

Figure 2. The placement of the fan, irradiance meter, 
energy meter, and controller box in the PV system

Cross-flow fan Controller box and 
power supply

Light sensor 
BH1750

Small plastic boxes Energy meter
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the roof and, therefore, the wind created by the fan is not affected by the roof’s temperature. 
The experiment was conducted at the site for 12 consecutive hours, from 7.00 a.m. to 7.00 
p.m., for several days before and after the installation of an air-cooling system. All data 
for solar irradiance, Tcell and electrical parameters data are trended at 3-second i ntervals.

The output voltage of the PV module, Vpvexp, Tcell, and solar irradiance were measured 
and recorded during the experiment before and after applying the cooling system. Estimating 
the current output of a PV module or array under real-world operating circumstances is 
critical. This is because irradiance and temperature are instantaneous factors that directly 
influence the PV module’s output. The concept of expected instantaneous output, where 
how much output of PV module per peak sun factor (PSF) at 1000 Wm2, was implemented 
in this study using Equation 2 (Mustafa et al., 2024):

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 _𝑝𝑝𝑐𝑐𝑎𝑎𝑝𝑝𝑐𝑐

1000 𝑊𝑊𝑊𝑊2         [2]

where Garray_plane is solar irradiance in array plane (Wm2). 
The expected output voltage for the PV module at the maximum power point, Vpv_roc, 

corresponding to the Tcell, can be calculated from Equation 1. Technically, peak sun hour 
(PSH) is the number of hours in a day with an irradiance intensity of 1000 Wm2. An 
estimation of solar irradiance magnitude using total solar irradiance (TSI) was used in 
order to differentiate between levels of solar irradiance received (Egorova et al., 2018; 
Seleznyov et al., 2011). Total PSH in a day was used as TSI to classify the level of solar 
irradiance received per day. Solar irradiation levels are classified as high when the number 
of PSH exceeds 5.5, moderate when the range is between 3.5 and 5.4, and low when the 
level is below 3.5. Figure 3 shows a graph for the high, moderate and low levels of PSH 
used in this study to develop the desired models.

Figure 3. High, moderate and low PSH received in a day
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Tcell  and Vpvexp data were used to develop a data-based model using SI. These models 
will then be used as model-based control for further work on controller design and 
investigation to improve the efficiency of the proposed air-cooling system. This air-cooling 
PV system model refers to a PV module using an air-cooling system. PV module output 
and air-cooling PV system model was developed using SI. The strategies of SI might use 
all acquired data as input and output data or solely the output data. As shown in Figure 4, 
the PV module model input is Tcell while the model output was the output voltage of PV 
before applying an air-cooling system. This output voltage of PV data will be an input to 
the air-cooling PV system model, while the output voltage after applying the cooling system 
data will be the output for the air-cooling PV system model. During the development of 
the data-based model, the following assumptions were considered.

(i) Due to the tiny airspace between the PV module and the roof and the restriction 
of natural heat transmission, the wind does not affect the Tcell.

(ii) Solar irradiance and Tcell were evaluated in this study as the determining factor 
for PV module output.

Figure 4. Input and output for PV module and air-cooling PV system model

Model Estimation and Optimisation

The developed models rely significantly on data. The available data set allowed us to 
evaluate a non-linear model of a PV module’s output in the context of solar irradiance, 
voltage and Tcell. Experimentation on the PV module before and after installation of the 
air-cooling PV system provides the data used for the model estimate. For every 3 seconds 
from 7.00 a.m. to 7.00 p.m., 14 400 data points were sampled at the German Malaysian 
Institute. Prior to testing, the analysis of input and output signal processing is conducted, 
and the TF of the system is determined using MATLAB’s SI Toolbox. Parametric models are 
employed to identify, wherein a mathematical model is derived from empirical data (Rachad 
et al., 2014; Sumalatha & Rao, 2016). It is imperative for the model to possess the ability 
to quantify the output of the system. In order to optimise the transfer function estimation 
system and achieve precise output (Donjaroennon et al., 2021) of the photovoltaic (PV) 
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module, it is imperative to design the Pole and Zero of the system in a manner that 
maximises the fit of the graph. Various models were found with the aim of determining the 
most optimum solution. The transfer function was employed in these structures to establish 
the most effective model, whereby the order of the polynomial functions of the numerator 
Nui(s) and denominator Dej(s) was manipulated (Equation 3).

𝐺𝐺(𝑃𝑃) = 𝑁𝑁𝑁𝑁𝑖𝑖(𝑠𝑠)
𝐷𝐷𝑐𝑐𝑗𝑗 (𝑠𝑠)

          [3]

The identification procedure entails iteratively choosing model structures, identifying 
the optimal model inside the structure, and assessing the features of this model to determine 
their adequacy. The models that demonstrated the highest performance were chosen for 
validation based on the assessment measure employed. After successfully completing the 
model validation procedure, the model’s acceptability may be determined by comparing the 
output of the measurement with the model’s simulation output, which leads to the creation 
of the model’s outcome curve. The acquired models were utilised in Simulink to verify their 
performance under varying levels of irradiance, including high, moderate, and low levels. 

RESULTS AND DISCUSSION

Figure 5(a) depicts the graph for Vpv_exp that was influenced by Tcell, compared to the 
calculated data, Vpv_calculated, before installing the air-cooling PV system. The highest Tcell 
(point A) was 74.3oC. It is essential to ensure that the backside of the PV module is cooled 
to reduce the Tcell. An initial rise in irradiance led to an increase in the Vpv_exp and Tcell. 
However, based on the experimental data depicted in the graph, the Vpv_exp started to lower 
due to the rising temperature and irradiance. The increase in Tcell resulted in a significant 
decrease in Vpv_exp compared to Vmp_calculated before implementing an air-cooling system. 
The lowest Vpv_calculated (point B) was 23.9 V, while the lowest Vpv_exp (point C) was 21.8 V. 
The measured value of Vpv_exp remains lower than the calculated value of Vpv_calculated. After 
3.00 p.m. both Vpv_exp and Vpv_calculated exhibit an upward trend, whereas Tcell experiences 
a decline. This is caused by a decrease in irradiance at this particular time. Consequently, 
the decline in Tcell no longer results in a rise in Vpv_exp and Vpv_calculated at this juncture 
as a result of the diminishing irradiance. Figure 5(b) depicts the graph after employing 
an air-cooling system. As the irradiance increased, an increase in Tcell led to a decrease 
in both Vpv_exp and Vpv_calculated , with Vpv_exp remaining higher than the calculated value. 
The lowest Vpv_exp (point B) was 26.2 V, while the lowest Vpv_calculated (point C) was 22.2 
V. Figure 5 satisfies Equation 1, which states that the voltage will decrease when the Tcell 
exceeds the standard test condition (STC) temperature, 25oC. This happened because of the 
thermal effect on the PV module due to the negative value of the temperature coefficient 
for voltage and power, γ.
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The input and output signals for the PV module model are shown in Figure 6. The 
input is the value of Tcell, and the output is the output voltage of the PV module. For the 
air-cooling PV system model, the input and output signals are shown in Figure 7. The 
input is the output voltage of the PV module without the air-cooling system, Vpvexp_uncool, 
while the output signal is the output voltage of the PV module with the air-cooling system, 
Vpvexp_cool. The model was constructed using the PV module’s output voltage at maximum 
power point, corresponding to the current irradiance. The data was separated into two 
sections for model estimation. The initial section of data is used to determine the system’s 
model, while the other part is used to validate the model. SI toolbox in MATLAB was 
utilised to perform all estimation processes. 

Figure 5. Experimental and calculated values (a) before and (b) after employing an air-cooling PV system 
based on the corresponding Tcell for the respective testing day

(a)

(b)
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Validation

As a general rule, models can be accepted when the percentage of fit is at least 90%. 
Figures 8 and 9 depict the output model curve from which the TF model polynomials may 
be derived. The output models’ curves reveal that the percentage of fit is 90% for the PV 
module model and 94.3% for the air-cooling PV system model. Figure 8 demonstrates 

Figure 7. Input and output signals in system identification toolbox Matlab for air-cooling PV system model 
development

Figure 6. Input and output signals in system identification toolbox MATLAB for PV module model development
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Figure 9. Estimated air-cooling PV system model in German Malaysian Institute

Figure 8. Estimated PV module model in German Malaysian Institute  

the output voltage for the PV module before implementing an air-cooling system, while 
Figure 9 demonstrates the output voltage for the PV module after implementing an air-
cooling system.

The Simulink model of the air-cooling PV system is designed to represent parameter 
changes over time-based on solar irradiation. The model was developed as a transfer 
function, which is performed in the continuous-time domain, as stated in Equation 4.

𝐺𝐺(𝑃𝑃) = 728.1𝑠𝑠2+0.121𝑠𝑠+0.0003856
𝑠𝑠3+ 563.7𝑠𝑠2+0.09345𝑠𝑠+0.0002981

        [4)
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The transfer function model G(s) contains three poles and two zeros. It accurately 
represents the data from the German Malaysian Institute’s system, with a fit of up to 94.3%. 
The transfer function associated with the third-order differential equation yields a linear 
model. Additionally, the controllability and observability of the developed mathematical 
models were evaluated. The Bode plot in Figure 10 displays the frequency response of 
the model. The pole and zero were plotted for each model and observed to narrow down 
the model. An optimal model will exhibit stability when all its poles and zeros are located 
within the unit circle. A model is considered the best when all its poles and zeros are located 
within the unit circle, indicating stability.

Figure 11 illustrates that each zero and pole is inside the unit circle. This is referred to 
as a minimal phase model. This model specifically focuses on the principles of causality 
and stability. It is intended to be utilised for in-depth research and to establish a relationship 
between both input and output variables. The model used to estimate the output of a PV 
module with an air-cooling system is noteworthy for its linearity and description by a transfer 
function. Additionally, it relates to a third-order differential equation. The model guaranteed 
stability, allowing for further examination of its controllability and observability aspects.

These mathematical models were used to achieve the highest output of the PV module 
when receiving solar irradiance by decreasing the influence of Tcell. A model estimate of 
solar irradiance and voltage was performed using a generic SI approach, including data 
analysis, model structure selection, parameter estimation, and model validation (Ljung, 
2012). Data evaluation is done to acquire decent data. The model structure is selected to 
ascertain the desired model for generation. It may take linear, non-linear, or intelligent model 
form. Validation serves the objective of comparing the predicted output of the model with 

Figure 10. Frequency response for the air-cooling PV system development
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can generate graphical representations such as output response, impulse response, and 
Bode diagrams based on the transfer function. In Simulink implementation, the models 
obtained were used to observe the output performance of the PV module before and after 
implementing the proposed air-cooling system using different levels of solar irradiance 
data. This step is very important to ensure that the developed models are compatible 
with multiple levels of solar irradiance. Figure 12 shows the simulation block diagram in 
Simulink used for air-cooling PV system observation.

The simulated data for multiple levels of PSH obtained from the model was then 
compared to measured data. Table 1 shows the percentage achieved for the validation 
models. From Table 1, the percentage of validation for high, moderate and low are above 
90%. This means that the developed models are capable of anticipating a voltage output 
almost as accurately as the value when the experiment was carried out. The model’s failure 
rate in predicting inequality is less than 10%. The results shown in Table 1 demonstrate 
the generated models’ effectiveness in handling different PSH levels.  

Figure 11. Pole zero plot for the air-cooling PV 
system model

Figure 12. Simulation block diagram for air-cooling PV system

Poles (x) and zerpos (o)

the observed outcome of the experiments. 
It might be deemed acceptable if the model 
validation satisfies the required percentage 
of fit and other criteria (Ljung, 2012). In 
contrast to traditional approaches, this 
identification technique exhibits enhanced 
speed and accuracy. The highest percentage 
of fit was utilised to determine its selection 
and ascertain the transfer function that 
most accurately reflects the accuracy of the 
estimation output model with respect to the 
input data. It is necessary to compare the 
accuracy of the selected transfer function 
computation with the input data provided 
by MATLAB. Furthermore, MATLAB 
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Strong evidence that the air-cooling 
PV system successfully boosted the output 
performance of the PV module was found 
when the output voltage after implementing 
the air-cooling PV system, Vpvexp_cool, was 
higher than before implementing the cooling 
system, Vpvexp_uncool. Using different levels of 
solar irradiance to represent multiple levels 
of PSH as an input to the model-based 

Table 1 
Percentage of validation simulated model to measured 
data under high, moderate and low levels of solar 
irradiance

Model High 
PSH

Moderate 
PSH

Low 
PSH

PV module 90.1% 92.4% 90.8%
air-cooling PV 
system

91.7% 93.2% 91.5%

control developed, Figure 10 shows the output voltage, Vpvexp, before and after applying 
the air-cooling PV system for high, moderate and low PSH. The results from Figure 13 
indicate a 10.8% gain in mean output voltage after implementing the proposed air-cooling 
PV system for high PSH, 17.5% for moderate PSH and 15.3% for low PSH. 

Since the PV module has the largest Tcell, it has the lowest percentage increase in 
output voltage under high solar irradiance. While it is probable that the fan in the cooling 
system has reached its maximum rotational speed, further time is required to decrease Tcell 
because, at the same time, the higher solar irradiance can keep Tcell high. Hence, while 
the PV module experiences a significant amount of solar irradiance at any one moment, 
the prolonged time of solar irradiance receipt also contributes to the time to decrease the 
Tcell. In moderate solar irradiance, the Tcell exhibits a lower magnitude compared to high 
solar irradiance. PV modules that receive moderate solar irradiance have a shorter time of 
high solar irradiance acceptance, resulting in a quicker temperature reduction compared to 
modules that receive high solar irradiance. This phenomenon results in a greater magnitude 
of voltage production compared to both high and low solar irradiance levels. While the 
Tcell experiences a decrease when exposed to low solar irradiance, the percentage output 
voltage rise is rather small compared to the moderate solar irradiance it receives. Despite 
the low temperature, it is important to acknowledge that a decrease in solar irradiation will 
result in a corresponding decrease in output voltage. The receipt of ample sun irradiance 
values in cold temperatures is highly advantageous for PV modules. This demonstrates 
the indispensability and significance of cooling in the restoration of the PV performance 
module, and the suggested air-cooling system is capable of effectively managing this task. 
The simulation results above demonstrate that the generated models effectively adjust to 
various amounts of solar irradiation, indicating their potential for further research.

CONCLUSION

Before and after installing an air-cooling PV system, solar irradiance, Tcell and voltage 
output were measured to determine the actual PV output, Vpvexp. Before installation of the 
proposed air-cooling PV system, the higher Tcell will cause the voltage and power output 
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Figure 13. The output voltage of the PV module before and after applying an air-cooling system using the 
SI model for (a) high-level irradiance, (b) moderate-level irradiance, and (c) low-level irradiance

(a)

(b)

(c)
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of the PV system to decrease. The air-cooling PV system used to cool down the Tcell 
subsequently enhanced the output performance of the PV module. This paper develops and 
stimulates a data-driven mathematical model for PV modules and air-cooling PV systems. 
The experiment was conducted continuously for a duration of 12 hours, which is the longest 
period of uninterrupted data collection compared to prior studies. The data was taken at 
3-second intervals, resulting in a total of twelve thousand data points, which is the highest 
number compared to the prior study. The use of extensive data in the development of a 
more precise model for air-cooling photovoltaic systems is a unique aspect of this work. A 
mathematical model has been constructed to optimise the performance of a PV module and 
air-cooling PV system under varying levels of solar irradiance. The lack of development 
in the prior air-cooling PV system model necessitated the development of this new model, 
which is a significant innovation in this study. The developed models could be utilised 
in future research endeavours aimed at enhancing the efficiency of the PV module and 
the proposed air-cooling PV system. The analysis shows that the TF model provides the 
greatest fit. The percentage of fitness for the PV module model is 90%, while it is 94.3% 
for the air-cooling PV system model. The simulation findings indicate minimal disparities 
in the average output voltage between the model system and the actual data across all levels 
of solar irradiation, with each discrepancy being less than 10%. The PV module model 
demonstrated validation values of 90.1%, 92.4% and 90.8% for high, moderate, and low 
PSH, respectively. The validation results for the air-cooling PV system model were 91.7%, 
93.2%, and 91.5%. The output mean voltage exhibits a progressive increase, reaching 
10.8% higher under conditions of high PSH, 17.5% higher under conditions of moderate 
PSH, and 15.3% higher under conditions of low PSH. Upon careful analysis of the data 
received from the validation of the models, as well as the findings from the simulation, it 
can be concluded that the produced model-based control has been effectively developed and 
may be utilised in future research, particularly in the field of controller design, to ensure 
optimal performance of the proposed cooling system.
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